GCP ML Node

The GCP (Google Cloud Platform) ML Node allows a workflow to send data to Google ML and store the resulting predictions on the workflow payload.

GCP ML Node

Prerequisites

If you're new to Google ML, TensorFlow, or machine learning in general, you may want to take some time to look through the following resources:

Configuration

Configuration for the node is broken up into four sections.

Service Account Auth Token

A service account auth token is required for the workflow to authenticate with Google ML. You may enter this token one of two ways:

Cloud ML Model Configuration

Specify the name of the model for which you want to get predictions. You may optionally specify the model version as well; if no version is provided the model's default version will be used. Before you can get predictions from a model, you'll first need to train it with sample data and then deploy it.

Input

The instances path is a payload path that points to the data you want to get predictions for.

Output

The output path is a payload path at which to place the prediction results.